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Systems with aftereffect are considered. The state of these systems is described by integrodifferential equations of the Volterra 
type, which depend on ftmctionals in integral form and, in particular, on analytic functionals which are represented by Frechet 
series. The integral kernels can allow of singularities of Abel kernel singularities. The total stability (i.e. stability under persistent 
disturbances) is investigated, and the structure of the general solution is investigated in the neighbourhood of zero for an equation 
with a holomorphie non-linearity assuming asymptotic stability of the trivial solution of the linearized unperturbed equation. 
The conditions for instability are given in the critical case of a single zero root, which generalise results obtained previously. 
© 2003 Elsevier Science Ltd. All rights reserved. 

Integrodffferential equations with kernels of the type being considered are used in models of visco- 
elasticity (in polymer mechanics, for example) and in models of aerodynamics, which take account of 
the effect on the body of unsteady flow using integral terms. 

1. T O T A L  S T A B I L I T Y  

We shall consider a system with aftereffect described by an integrodifferential equation of the Volterra 
type 

t 
dr = A(t)x + J K(t, s)x(s)ds + F(x, y, z, t) + ~ttl~(~t, x, y, z, t) (1.1) 
dt to 

x ,y , z  ~ R ' , x  = col(x~ ..... xn) 

where 

! 

y = Jk(t, s)9(x(s), s)ds (1.2) 
to 

and z --- col(z1, . . . ,  zn) is an analytic functional which is defined by the Frechet series 

t l 
z(t)= ~, ~ J ...f Kitk'(t, sl ..... sk)xh (h)...xj~ (sk)ds I .... ds k (1.3) 

k=i j(k)=lt 0 t o 

The set of indices j l  . . . . .  jk is denoted byj(k). 
The n x n matrixA(t), defined in the set I = {t 6 R : t ~> to}, has continuous, bounded elements and 

the n x n matrix K(t, s) is continuous and is defined in the set J~ = {(t, s) ~ R 2 : to <- s < t < +oo }. The 
• j ( k )  continuous n x n matrix function k(t, s) and the n-vector function K (t, sl, . . . ,  sk) are defined respectively 

in the sets J~ andJ~ = {(t, Sl, ... ,Sk) ~ R k+l :to ~< sj < t < oo+ , j  = 1, ... ,k}.  The functions t0(x, t), 
F(x, y, z, t), ~( t i ,  x, y, z, t) are holomorphic, with respect to ~t, x, y, z in a certain neighbourhood of zero 
in the corresponding spaces, continuous, and are bounded with respect to t when t ~ I and are such 
that to(0, t) - 0 and the expansion of the function F(x, y, z, t) does not contain terms of lower than the 
second order. 
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In a number of problems in aeromechanics [1, 2] and, also, the mechanics of a deformable body 
[3, 4], the functionals (1.2) and (1.3) have decreasing integral kernels (of the difference type) which 
allow of singularities when t = s or t = sj. Here, we shall therefore assume that, in the case of the integral 
kernels appearing in the representations of (1.2) and (1.3), the following inequalities hold 

II k(t,s)114 Cexp[-I$(t - s)] 
(t_s)p o (1.4) 

. . . . .  c Xpt- ,< 
[(t-  s~). . .(t- sk)lP 

(1.5) 

where C > 0, p, P0, [3 > 0, ~i (i = 1 . . . .  , k) are constants, 0 ~< P0 < 1, 0 ~< p < 1 and a number [3o exists, 
which is independent of k, such that 0 < [30 ~< 13 i. 

In Eq. (1.1), ~t 1> 0 is a small parameter and the quantity IXO(#, x, y, z, t) is taken as the persistent 
disturbance. 

For Eq. (1.1), we consider the question of the total stability (in the Malkin sense), of the state of the 
system corresponding to the value x = 0. We will also investigate the structure of the general solution 
of this equation in the neighbourhood of zero, subject to the condition that the solution x = 0 of the 
unperturbed equation (that is, when IXO(IX, x, y, z, t) - 0) is asymptotically stable. We will use the first 
Lyapunov method for this purpose and represent the general solution of the Cauchy problem in the 
form of a power series with respect to the initial values x0 = X(to) = col(x0~ . . . . .  x~)  and the parameter 
Ix. 

The fundamental matrix of the linearized unperturbed equation (1.1), with a lower limit of integration 
s in the integral term, is denoted by X(t, s) (X(t, t) = E,). We shall assume that 

II x(t,x)II 4 Cexp[-c t ( t -  s)], cc = c o n s t  > 0 (1.6) 

Theorem 1. Suppose inequalities (1.4)-(1.6) are satisfied for Eq. (1.1)-(1.3) and that the number 
y < min(cq 130, [~) is chosen. 

Then 
(1) the general solution of Eq. (1.1)-(1.3) in the neighbourhood ofx = 0 is represented by the series 

~l(n)t't't~'ll ~ ~(ln+l)t~'tHln+l x(t)= r(t) ~, Z ,,i ,,,--01...x~", + o 2 ,,,~, + 
m=l sl(n)=m /n+l =1 

+F(,) ~ ]~ S~(n+')(t)x~',...Xto"ng ,'+', F(t)=expt-T( , - ,o)]  (1.7) 
In+ 1 ,m=l sl(n)=m 

(sl(n) = 11 +...+ In) 

with continuous, bounded coefficients S!')(t) which converge absolutely and uniformly when IIx011 < 5, 
~t < 8 for any8 > 0; 

(2) the point x = 0 is totally stable. Theproofis  carried out in a similar way to that described earlier 
in [6, 7] with the use of the integral equation 

t 

x(t) = X(t, t o )x o + S X(t, s)(F(x(s), y(s), z(s), s) + gO(Ix, x(s), y(s), z(s), s))ds (1.8) 
to 

which is equivalent to Eq. (1.1) with the initial condition x0. The variables y(t) and z(t) are represented 
by series similar to (1.7) with the coefficients S(t) with different indices replaced by P(t) and by Q(t) 
with the same indices, respectively. The above-mentioned coefficients S(t), P(t) and Q(t) are determined 
successively for increasing m and ln+l on the basis of formulae (1.8), (1.2) and (1.3). For m = 1, 
ln+l = 1, for example, we obtain the relations 

t 
vl(n) I,,X~II l"(t) ]~ "1 ,,,~ol...xt"n =X(t, to)Xo, S~I)(t) = IX(t,s)O(O,O,O,O,s) ds (1.9) 

sl(n)=l t O 

and the inequalities 
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=cons t>0  

On the basis of Eqs (1.2), (1.7) and (1.9), we also have 

t 

r( t)  Y pit'n)(t)xt~, ...Xto~ n +BJ~')(t)= ] k(t ,s) tox(O,s)[X(s,  to)X o +llSO)(s)]ds 
sl(n)=l t o 

and, consequently, when s l (n)  = 1, according to the estimate (1.4) and taking into account the fact that 
Iltox(0, t) ll ~ too = const, we obtain the estimates for t E I 

-2  - - I - -  tt exp[-~( t -  s)] 2 * 
~ 0 -  ( t ) j  ~ exp [ -o t ( s - t 0 ) ]d~<c  to0K~_y,p0 

to ( t -  ~) 

• 7 exp(-Itx) _ 

0 '~ 

In a similar way, for example, in view of relations (1.3), (1.5) and (1,6), we have the limit 

[[ Q l'(t)ll 
for the coefficient Qtl)(t) of the expansion for z. 

As earlier in [6, 7], the power series 

u =u(ix, x0), v =v(ix, x0), w =  w(~t,x o) 

which majorize the expansions for x, y and z respectively, are constructed. To determine them, we have 
the equations 

u = C ( x o + M i F . ( u , u , w ) +  ~t ~*( l l ,  u ,u ,w) )  (1.10) 
o t -  y 

* s 
, , CK~o _y,pu 

v = CK~_v.Oo to (u), w i = - . - - ' ; - - -~ , ,  u'  = u I +. . .  + u n 
1 - KII o_r ,pu 

ul ">xi, wi'>Zi, w = col(w I ..... w n), i = 1 . . . . .  n 

(1.11) 

where 

F*(x,  y , z )  ~> F(x,  y , z ,  t), ~*(kt,  x, y , z )  ,> O(~t,x,  y , z ,  t), to ' (x)  >> to*(x, t) 

and 1/(a - y) can be taken as the constant M 1. 

According to the general theory of majorizing equations [8], Eq. (1.10) has a unique positive solution 
u = u(kt, x0) in the form of a converging power series in x0 and Ix which vanishes when x0 = 0, tx = 0. 
Hence, series (1.7) converges absolutely and uniformly for all t ~ I and IIx011 < 8, ~t < ~ for a certain 
6 > 0 which, in turn, implies that the point x = 0 is totally stable. 

We will now consider Eqs (1.1)--(1.3) in more detail, dropping the requirement that the functions 
are holomorphic and assuming that a Lyapunov majorant [9] exists for the functions to(x, t), F(x,  y, z, t) 
and for a persistent disturbance IxO(x,y, z, t) (IX is a small parameter). We shall assume that, in a certain 
neighbourhood of  zero, these functions have B'(x)  or B(x,  y,  z )  continuous, bounded first derivatives 
with respect to x or x, y and z, which are continuous and bounded with respect to t ~ I, and that 
to(0, t) --- 0, F(0, 0, 0, t) = 0. The conditions imposed on the functions A(t), K(t,  s), k(t ,  s),  KJ(k)(t, s 1 . . . .  , 
Sk) remain as before; in particular, inequalities (1.4) and (1.5) are satisfied. 

Suppose to* (x), F* (x, y, z) and O* (x, y, z) are the Lyapunov majorants for the corresponding functions 
and, consequently, they are positive and monotonically increasing with respect to x, y and z together 
with their first derivatives in a certain neighbourhood of zero. We shall assume that the majorants 
tO* = col(to~' . . . . .  to*) and F* = col(F~' . . . . .  F*) satisfy the following conditions for arbitrary e, which 
is such that 0 ~< e ~< 1: 
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~i($U)~E~I(U), uEBt(u) 

6*(Eu, eo, ew)<~e'+66(u,u,w), 8>O,(u,o,w)EB(u,u,w) 
i= 1 . . . .  ,n 

(1.12) 

We shall also, as earlier, assume that inequality (1.6) is satisfied. 
The following theorem holds. 

Theorem 2. Suppose Lyapunov majorants (p*(x), F*(x,y, z) and O*(x,y, z) exist, which obey inequalities 
(1.12), in the case of Eq. (1.1)-(1.3) with the functions (p(x, t), F(x, y, z, t) and (P(x, y, z, t), which satisfy 
the smoothness and continuity conditions mentioned above. Suppose inequalities (1.4)--(1.6) are satisfied. 

Then, the point x = 0 
(1) is stable under persistent disturbances IX(I)(x, y, z, t); 
(2) possesses the property of attraction if the condition 

l~(O, 0, 0, t){{ ~ C exp(-~/0t), "/o -- eonst > 0 (1.13) 

is additionally satisfied. 
The proof  is carried out by the method of successive approximations using Eq. (1.8) and is similar 

to the proof of Theorem 1 from [10]. 
Ifxk(t), yk(t), zk(t) (k = 1, 2 . . . .  ) are successive approximations forx(t), y(t), z(t) 

t 
x I (t) = X(t, t o)x o + IX S X(t, s)O(O, O, O, s)ds 

to 

and 

u k >>x k(t), y k>>yk (t), wk>>Z k (t) 

then, for the majorants 

u >> x(t), v ~" y(t), w >> z(t) 

we have the majorizing equation 

u = C(xo + l F * ( u , o ,  w)+~--~*(u,u,  w)) 
I~ ot 

(1.14) 

in which expressions (1.11) can be taken for the functions o and w. 
Assertion 1 of Theorem 2 follows directly from the existence, in the neighbourhood of the point 

u = 0, of a smooth solution u = u(ix, x0) of Eq. (1.14) which increases monotonically with respect to 
each coordinate and vanishes when x0 = 0, ~t = 0. 

Assertion 2, which is due to the additional inequality (1.!3), follows from the fact that, in this case, 
the solution can be represented in the form 

x(t) = exp(-?t)j(t), ~/< rain(or, ~, ~o,7o), ~.~(t)~ ~< const, t e I 

which can be established in the same way as the analogous property of the solution in Theorem 1 from 
[101. 

As an example, consider the problem [11] of the motion of a rigid body (a wing) when there is an 
unsteady air flow past it, which, in theunper turbed state, flows round the body at a constant velocity 
and, in the perturbed state, small fluctuations (gusts) are superimposed on it. These small perturbations 
are functions of time and, unlike in the case considered previously in [11], they will not be taken as 
decaying exponentially here. In addition, it can be assumed that the integral kernels liy(t) and Jij(t) 
in the representations for the aerodynamic forces and their moments (expression (1.5) in [11]) in 
the form proposed in [1] are differentiabl¢ functions such that their derivatives admit of an estimate 
of the type of (1.4). Then, on changing from the equations of motion in a form which is unsolved with 
respect to the derivatives to the standard form of integrodifferential equations, which are solved with 
respect to the derivatives, we obtain equations of the type of (1.1). In this case, the non-linear terms 
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of the equations can contain integral terms with kernels containing singularities of the type considered 
above. Consequently Theorem 1 (or Theorem 2) is applicable, depending on the form of the non-linear 
terms being considered. The equilibrium position of the wing, which is maintained by viscoelastic springs, 
the properties of which are maintained the same as in [11], will be totally stable if all the roots of the 
characteristic equation have negative real parts. 

2. STABILITY IN THE CRITICAL CASE OF A SINGLE ZERO ROOT 

We will investigate the Lyapunov stability of the motion corresponding to the trivial solution of the 
equation 

dx f 
= A x  + S g ( t  - s )x (s )ds  + F(x ,  y,  z, t)  (2.1) 

dt  to 

in which A is a constant n x n matrix and the n x n matrix K( t )  is continuous when t > 0 and satisfies 
an inequality of the type (1.4) 

IK(t)] ~ c cxp( -~ )  C > 0, 13 > 0, 0 ~ Po < 1 
tOO ' 

(2.2) 

The function F(x,  y ,  z,  t), which is holomorphic with respect to x, y and z, and a continuous, bounded 
function with respect to t ~ / ,  possesses the same properties as the analogous function in Eq. (1.1) and, 
moreover, when t ~ +0% the coefficients of the expansion in a power series tend exponentially to 
constants or they are constant. The variables y and z are given by representations (1.2) and (1.3) in 
which the integral kernels of the difference type 

k ( t , s )  = ko( t  - s),  KJ(k)(t,  si . . . . .  s l )  = KJoek)(t - s I . . . . .  t - s k) 

are subject to inequalities (1.4) and (1.5). 
We will now construct the characteristic equation for Eq. (2.1) 

detO~E s - A - K*(~,)) = 0 (2.3) 

where K*(3.) is the Laplace transform for K(t) .  
Suppose that, in the half-plane Rek > -13, Eq. (2.3) has a finite number of roots 3.~(j = 1 . . . . .  L, 

L I> n), which have been numbered in the order in which their real parts increase, that is, 

Re~,~ a Re~.~ a . . . a  Re3.[_1 <X~ --0 (2.4) 

We shall assume that the roots 3.~-k(k = 1 . . . . .  n - 1) are simple (there can be complex-conjugate roots 
among them). For the characteristic exponents we have the relations 3.i = Re3. 'L+l-i(i  = 1 . . . . .  n) .  

The stability in the critical case of a single zero root for Eq. (2.1) was investigated previously in [12-15] 
in the case when the function F has a simpler structure and the integral kernels do not contain singu- 
larities. A technique for determining the Lyapunov constant and a method of proving instability for 
the example of equations with integral kernels of the exponential-polynomial type were developed in 
[12-14]. An assertion concerning stability was made in [15] in the case of equations with kernels 
K( t )  ~ C, without singularities, with a function F(x,  t) of the type considered here, and with roots which 
satisfy condition (2.4). 

The result cited below (Theorem 3) extends the corresponding assertion in [15] to the case of integral 
kernels with singularities of the type of (2.2), (1.4) and (1.5) and with the function F(x,  y ,  z, t) which 
occurs in Eq. (2.1). 

Following the well known procedure [16], we will represent the resolvent of the linearized equation 
(2.1) in the form 

L 
R(t) = 5". p~ exp(;t~t) + R~(t), t E I 

iffiL-n+l 

where Pi is a constant diagonal matrix, the n x n matrix Ra(t) ~ C 1 and IlRl(t)l I ~< C exp (-[3*t) 
(C, 13" = const > 0) for -13 < -13" < 3.1. In addition, we shall assume that 
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II dR,(t)/at I~ C exp(-~'t), l~" = const ~ ~* (2.5) 

The fundamental matrix of the solutions of the linearized equation (2.1), which is normal in the 
Lyapunov sense [17, 18], is denoted byX'(t) = (x~.(t)) ( i , j  = 1 . . . . .  n).  

Suppose Y' ( t )  = (yb(t))  is a matrix which is such that Y ' ( t ) X ' ( t )  = En and suppose X~(t )  is a matrix 
which is obtained from X ' ( t )  by deleting the nth row and the nth column. 

Following the approach described earlier in [14, 15], we carry out a transformation which separates 
out the critical variable and which reduces the linearized equation (2.1) to a differential equation with 
a constant diagonal matrix. For this purpose, we make the transformation 

z' = col(zl . . . . .  zn-j ) = exp(A' t)Y(( t)x" 

x' = col(x I . . . . .  X n _ l )  , AI -dmg(~'t.-n+l ..... kt . ' l )  

and introduce the critical variable 

z. = Z y~j(t)xj 
j--1 

At the same time, it is assumed that the following conditions, which permit the transformations under 
consideration to belong to the class of Lyapunov transformations, are satisfied 

n - I  

II exp(- E~, / )det  X'(t) II ~ d" > O, t ~ t 
j = l  

II Y~ (t)II ~, S' > 0, a ' , 5 ' , h '  = const (2 .6)  
n - I  

II exp(- E k i t )  det X;(t) II ~> h' > 0 
j--I 

We shall use the following definitions. 
We shall say that the functionf(t) e el(c~), if, when t e I, the estimate 

II f(t)1~ Cexp(~), C > 0, ¢t = const 

holds. 
We shall also say that the function cp(t, s) ~ el(y, ~), if, when to ~< s < t < + ~ ,  the inequality 

[ 1 9 ( t , s ) l ~ C  e x p [ a ( t - s ) ] ,  C>0,  l > y > ~ 0 ,  t x = c o n s t  
( t - s )  ~ 

holds. 
Similarly, the function ~t(t, sl,  s2 . . . . .  sk) ~ e~,+l(y, ctl, ..., Otk)(%' = const), if, in J~ 

C exp[oq(t- s l) +...+ ¢q(t- s t)] 
II ~(t,s~ ..... s,)  I[ ~- f(t-- $1)'"(t-- 8k)]¥ 

If the last inequality holds when y = 0 for to ~< sj ~< t < + ~  (j = 1 . . . . .  k), we shall assume that 
y(t, Sl, s2, . . . ,  Sk) ~ ek+l(aa, . . . ,  ak). If, in this case, cq = ... = Ctk = ~, then we shall also denote e~+l(Y, 
~1, . . . ,  Ctk) and ek+a(cq, ... , Ctg) by e~+l(Y, ct) and ek+l(c 0, respectively. 

All of the transformations which have been performed, which enable one to separate out the Lyapunov 
constant and to prove instability, must retain the property of all the integral kernels to belong to the 
class ek+l(--txa, . . . ,  --tXk) or e~+l(Y, -ctl, . . . ,  --Ctk) (~j > 0) and the property of all the coefficients ~0(t) of 
terms not containing integrals to decrease exponentially when t  ~ +oo, that is 

q~(t) = q~o + tPl(t), tp0 = eonst, tp I(t) ¢ e I ( -R) ,  tx > 0 (2 .7)  

We will estimate certain coefficients with integral terms which arise when carrying out the 
transformations. For instance, for K(t  - s) ~ el(y, -13) ([5 > 0), we obtain 

i K(t - ~)as = ~ K ( s ) a s -  ~K(s)ds = ko + k~(t) 
t o t o t 
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that is, we have a function of the type (2.7) with kl(t) E el(-~). 
Suppose K(t, s) E e'2(%-~) and f(t) E el(--ct')when 13 > 0, ct' > 0. Then 

[! d~ ~ x "-°gt" ~ exp[-(~j-°g)(t- s)] ds E e'(-5+~') K(t,s)f(s) <~ t .e pt )J (t_s)V 
to 

(2.8) 

where 6 = min (~', 13) and e > 0 is a certain small number such that 8 + e < 0. 
We will now consider a transformation which is similar to that carried out in [14, Section 3] and enables 

us to eliminate integral terms that are linear with respect to zn from the subsystem for the non-critical 
variables. Retaining the notation from [14], we estimate, for example, the function introduced there 

hj(t ,x) = [. k(t ,s)ds 
to 

where the integral kernel, if account is taken of (2.2) and the formula for k(t, s), is such that k(t, s) 
el(p0, --ix) for a certain a > 0. We have 

t-,o Ps~O ~ ) ds < C iih~(t,x)ll<< c ~ ex y exp(____ZO~)ds 
t-'C - ~  ,VO 

(2.9) 

It follows from (2.5) that hi(t, x) E e2(--~ ). 

Actually, on extending the definition of the function hi(t, z) with respect to continuity when t = x and estimating 
the integral on the right-hand side of inequality (2.9) (a bounded function when 0 ~< t - ~ < +~,), we obtain for 
t - x > ~ l  

.I" exp(-as) as < ~'exIX-o~)as 
t - '~  sPo t - T  

Consequently, we have 

Ilhl(t,x)ll~C'exp[-a(t-x)], 0<~ x~<t<+**, C'= const >0 

The estimates and the form of the decay of the functions h2(t, s), Ri(t, s) (i = 1, 2, 3), introduced in 
[14], are also retained. We will estimate, for example, the integral of the form 

t 

ll(t,X)=Sh(s,x)h'(t,s)ds, hEe~(Tl,-Cq), h'Ee~(T2,-ct2), oq >0, ¢t 2 > 0  

which appears during the course of the transformations. 
We have 

[ 11 (t, x) I~ < C'[  e x p I - a l  (s - x)] e x p I - a  2 (t - s)] ds < 
( s -  z) r' ( t -  s) v~ 

< c'j oxpLe: ± -  ,)J d,i oxpt-  (t-,)J d, = 
, ( s - ' t ) r '  ~ ( t - s )  Y2 

= C ,'-~! exp(-cqs).~ dsti~o exp(-°~2S)sy = ds, 0 ~< x < s < t < +o. (2.10) 

and, hence, Ii(t , ~) E e2(--~ ) for ~ = min(tx 1, ~2). 
As a result, a system of equations 

dz. = Z.(z', z., t) 
dt (2.11) 
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dzt t t 

• " " ~ R 2 (t , 'Ot~(Z, zn, z)d'c + ~ ( z ,  zn, t) dt  = AIz  + SR3( t ' x )Z"(z  , z , , x ) d x -  ' " " 
to t o 

(2.12) 

is obtained at this stage of the transformations, where 

t 

R3(t,x ) = Rl(t ,X) + ~ ha(s, 'c)R2(t,s)ds ~ e2(-O0 
"c 

for a certain Gt > 0, the expansions for Zn, • begin with the quadratic terms and the expansion for ~ '  
also contains a term which is linear inzn. T h e  order of a certain term occurring in ~0(z, z,, t) is determined 
by the power of the parameter e in this term in the expansion with respect to ~ for (p(~z, ez , ,  t )  with the 
replacement z ---> ez, zn ~ Ez~ (in the integrands as well). 

Equations (2.11) and (2.12) contain integral terms with integral kernels which only satisfy estimates 
of the type (1.4) and (1.5) or which belong to the class ek('-~) for certain k and c~ > 0. In determining 
the Lyapunov constant in Eq. (2.11), the integral terms of order k, which are solely dependent on the 
critical variable zn, are transformed by integration by parts in order to separate out the non-integral 
term of the same order. For example, if ×(t - s) ~ e~(~,, --~), O(t) ~ e1(-%) for ~ > 0, or0 > 0, we have 

t I 

~¢(t - s)~p(s)Z ~n (s)ds = Z~n l ' ( t ,  t) -- I l '(t,  z)kzkn - '  ('C)Z n (Z'(X), Zn (Z), z)dz 
to to 

l ' ( t ,  X) = ~ x(t - s)~(s)ds  
to 

where, according to inequality (2.8),/ '(t, t) ~ el(-~") for a certain y' > 0. By analogy with inequality 
(2.8), we have I ' ( t ,  ~) ~ e2(-Y") for a certain y" > 0. 

The transformation and estimation of the terms of the Frechet series, which depend solely on the 
critical variables, are carried out in a similar manner. In particular, for the quadratic term of the Frechet 
series with integral kernel Kn~(t  - Sl, t - s2) ~ e~(y, -[30) ([30 > 0), we obtain 

t t t t 

~ K n'n (t - s z , t - s 2)zn (sl)Zn (s2)dslds2 = ~ [Zn (t) S Kn'n (t - s I , t - s 2)ds~ - 
t 0 tO to tO 

t Sl 

- ~ ~ K"'" (t - x, t - s 2 ) a x Z ,  ( z ' f s l ) ,  z.(sl ), sj )dsl ]z. (s2)ds2 = z~(t)k "'n(t) +. . .  
toto 

where the dots denotes terms of higher than the second order. The coefficient kn~(t) is given by the 
expression 

t t oo*~ 

kn'"(t)  = S IKn" ( s , , s2 )ds ld s2  = q,n + k?,n(t); k~ "n = I ~Kn'n(st ,s2)dslds2 
tO tO to to 

where k~ ~ is a constant and k~'~(t) ~ el(--a) for a certain ct > 0. 
The transformation of subsystem (2.12) for the non-critical variables reduces to eliminating terms 

from the right-hand side which depend solely on z~ up to a certain power kl and integral terms which 
are linear with respect to zl and contain zn in powers which do not exceed a certain number k2. For 
example, to determine the constant g2 from Eq. (2.11) using the substitution 

t 

u ffi Z' + u~(t)z. + u~ (t)z 2 + ~ Mj (t, s )z ' ( s )z .  (s)ds (2.13) 
to 

linear and quadratic terms in zn are eliminated and, also, the quadratic integral term containing z'zn. 
In (2.13), u'l(t), u'2(t) are continuous and bounded functions when t ~ I and the function Ml( t ,  s)  is 
continuous when (t, s) ~ Y]. These functions are determined in the same way as in [14] and, in particular, 
we have the expression 

t 

M 1 (t, s) = - exp(A~t) S exp( -A~x)M~(x ,  s)dx 
$ 
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where M~(z, s) is the specified kernel of the integral term which is subject to elimination. At the same 
time, M~(x, s) ~ e~(Y, --a) (a > 0) and, consequently, according to inequality (2.10), Ml(t ,  s) ~ e'2(--~') 
for a certain c( > 0. 

In the general case, when determining the constant g ~ + l  (gk = 0, k = 2, 3, . . . ,  2m), for example, a 
transformation of the type of (2.13) is carried out in which there is a polynomial of degree 4m in z~ 
and an integral term which is linear in zl and is a polynomial of degree 2m + 1 in zn. The  coefficients 
u'tt)  and the kernels Me(t, s) of this transformation are found in the same way as in (2.13) and are such 
t laatM,(t,  s) ~ e'2(Y, - ~  or M,(t ,  s) ~ e2(-~) (a  > 0) and u~ (t) is of the type (2.7). Next, the Lyapunov 
constant gp is separated out in the equation for the critical variable by the standard procedure [13, 14] 
and this equation for the new critical variable un takes the form 

du, = gpu~ + Utn2)(U, Un,t)+ U(nP+l)(u, un,t) 
dt 

(2.14) 

where U (2), Un ~+ 1) are integral operators such that U(n2)(0, un, t) = 0 and U (2) (eu, eUn, t) is apolynomial 
in e of degreep without free and linear terms and the expansion with respect to e for U~n ÷r~(eu, eun, t) 
starts from the term containing e p+I. 

Next, as previously in [13, 14], ifp = 2m andgp ¢ 0 orp  = 2m + 1 andgp > 0, a sector is constructed 
in which the trajectory departs from the point x = 0 and the instability of the zero solution is established 
using Chetayev's theorem on instability. 

The following result therefore holds. 

Theorem 3. Suppose the characteristic equation (2.3) for Eq. (2.1), (1.2), (1.3), (2.2) has a finite 
number of roots X~ (j = 1 . . . . .  L) in the complex half-plane Re )~ > -13, X~, = 0 and inequalities (2.4) 
hold. Also, suppose conditions (1.4), (1.5), (2.5) and (2.6) are satisfied and that the constant gp ~ 0 
(gs = 0, s = 2 . . . . .  p - 1) whenp  is even orgp > 0 whenp is odd. 

Then, the trivial solution of Eq. (2.1), (1.2), (1.3) is unstable. 
Returning to the problem of a rigid body in an unsteady flow, considered in Section 1, we note that 

the results previously obtained [11] on the instability of the equilibrium of a body in the critical case 
of a zero root can be naturally extended on the basis of Theorem 3 to the case of integral kernels 
admitting of the estimates (1.4), (1.5) and (2.2). 

This research was supported financially by the Russian Foundation for Basic Research (02-01-00196 
and 00-15-96150). 
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